Illuminating Pedestrians via Simultaneous Detection & Segmentation

نویسندگان

  • Garrick Brazil
  • Xi Yin
  • Xiaoming Liu
چکیده

Pedestrian detection is a critical problem in computer vision with significant impact on safety in urban autonomous driving. In this work, we explore how semantic segmentation can be used to boost pedestrian detection accuracy while having little to no impact on network efficiency. We propose a segmentation infusion network to enable joint supervision on semantic segmentation and pedestrian detection. When placed properly, the additional supervision helps guide features in shared layers to become more sophisticated and helpful for the downstream pedestrian detector. Using this approach, we find weakly annotated boxes to be sufficient for considerable performance gains. We provide an in-depth analysis to demonstrate how shared layers are shaped by the segmentation supervision. In doing so, we show that the resulting feature maps become more semantically meaningful and robust to shape and occlusion. Overall, our simultaneous detection and segmentation framework achieves a considerable gain over the state-of-the-art on the Caltech pedestrian dataset, competitive performance on KITTI, and executes 2× faster than competitive methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereo- and neural network-based pedestrian detection

In this paper, we present a real-time pedestrian detection system that uses a pair of moving cameras to detect both stationary and moving pedestrians in crowded environments. This is achieved through stereo-based segmentation and neural network-based recognition. Stereo-based segmentation allows us to extract objects from a changing background; neural network-based recognition allows us to iden...

متن کامل

Stereo - and Neural Network - Based Pedestrian

In this paper, we present a real-time pedestrian detection system that uses a pair of moving cameras to detect both stationary and moving pedestrians in crowded environments. This is achieved through stereo-based segmentation and neural network-based recognition. Stereo-based segmentation allows us to extract objects from a changing background; neural network-based recognition allows us to iden...

متن کامل

A Pedestrian Detection System Using Applied Log-Gabor Filters

Pedestrian detection is one of the most important research contents of road safety. The crucial idea behind such pedestrian safety systems is to protect the driver and pedestrian from any accident. In this paper, a pedestrian feature extraction based on applied log-Gabor filters is presented. The resulting filtered images show desirable segmentation performance which allows support vector machi...

متن کامل

Simultaneous egomotion estimation, segmentation, and moving object detection

Robust egomotion estimation is a key prerequisite for making a robot truly autonomous. In previous work, a multimodel extension of random sample consensus (RANSAC) was introduced to deal with environments with rapid changes by incorporating moving object information. A multiscale matching algorithm was also proposed to resolve the issue of imperfect segmentation. In this paper, we present a nov...

متن کامل

Pedestrian Detection In Crowded Scenes Seminar Mustererkennung

This distribution addresses the problem of detecting pedestrians in crowded real-world scenes with severe overlaps. The basic premise is that this problem is too difficult for any type of model or feature alone. The first algorithm that integrates evidence in multiple iterations and from different sources proposed by Leibe et al. [2005] is presented. The core part of this method is the combinat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017